

MDENet – the home of model-driven
engineering
Newsletter #1

In this issue:

1. Welcome from the network director

2. Special Feature: A manifesto for subject-matter driven software engineering

3. Special Feature: Modelling different kinds of uncertainty

4. Highlights, News, and Events

5. Community Call

Welcome from the network director
Welcome to this first issue of the MDENet newsletter and thank you for your interest in the network.

Software is now at the heart of everything we do, and the problems addressed by modern software are

growing increasingly complex—from managing complete product life cycles to environmental

sustainability or an increasing demand for efficient and targeted healthcare for an aging population, we

will continue to need ever larger and more complex software to support the growing challenges we face

as a society. As we emerge from the COVID pandemic, this need for software will only increase, with some

observers predicting digital to become the key driver of economic recovery. Not only does the complexity

of our software requirements increase, we are also facing a huge gap between the need for software

developers and what our education system can supply. As a network, we strongly believe that model-

driven engineering (MDE) is a fundamental technology to help us address these big challenges. This is

reflected in our vision statement:

MDENet works towards a future where modelling technology ensures each decision

about software is made by the most appropriate stakeholder.

So, what is MDE and why is it such a fundamental technology? MDE focuses on the idea that software should

not be developed, as is traditionally the case, using fairly low-level, general-purpose programming

languages such as JavaScript, C++, C#, Java etc. Developing software in these languages forces software

engineers to constantly consider multiple competing concerns: they must capture the essence of the

business logic while also ensuring scalability and security, and building software that can be effectively

maintained and extended as requirements change over time.

Instead, MDE advocates the use of higher-level modelling languages, often highly specialised for

particular problem domains or stakeholders. This enables true co-creation and collaboration of experts

with a wide range of different backgrounds: subject-matter experts and business analysts are provided

with languages and tools enabling them to capture the essence of their domain, software engineers can

contribute their expertise in scalability and security using dedicated modelling languages of their own and

user-experience designers can integrate their designs using notations best suited for these challenges.

MDE complements these domain-specific modelling languages (DSMLs) with automation and

transformation technologies that enable the integration of such different viewpoints and perspectives

into a coherent software solution. Because DSMLs directly capture domain knowledge and domain

rationale, they also offer opportunities for more powerful validation and analysis—enabling errors to be

identified earlier in the development process. Overall, MDE has the strong potential to increase efficiency

of software development, reduce error rates and manage complexity.

Of course, there is no free lunch and we still have a long way to go to achieve our vision for MDENet. A lot

of technologies and software tools have been developed by the academic community and some industrial

players, but more needs to be done to increase the wider uptake in the software development community

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/How%20six%20companies%20are%20using%20technology%20and%20data%20to%20transform%20themselves/The-next-normal-the-recovery-will-be-digital.pdf

– and beyond in domains as diverse as AI, computational biology, data sciences, or robotics. Conversely,

there are still a lot of open research challenges in MDE and we will identify more research challenges as

MDE sees increased uptake.

MDENet aims to be the key driver for addressing these challenges. Join our community (at

community.mde-network.org) to help us:

1. Drive future MDE research – learn about the latest technology advances and industrial challenges

in our monthly research demonstration workshops, find experts who can help you tackle your

challenges with MDE, and build on our seedcorn funding to establish new collaborations.

2. Train the IT industry – learn about existing MDE technologies and how to use them for your project

by subscribing to our learning resources, learn from the experts in our regular virtual training

sessions, and help others use MDE efficiently by contributing to, or creating new, MDENet

learning resources.

3. Tell the story of MDE – join the conversation on our interactive online platform and events.

This newsletter offers two special feature articles, one by Federico Tomassetti from our partner

community strumenta.community, who has been working on a manifesto explaining the vision of model-

driven and similar technologies that put subject-matter experts at the heart of software development,

and one by Michalis Famelis, who discusses the connection between modelling and uncertainty. You can

also find pointers to events, past and future, that cover MDE topics. Future editions of the newsletter will

continue to keep you informed about important developments in the community – if you have something

you want to contribute, please consider our call for contributions at the end of the newsletter.

Have an enjoyable and relaxing summer,

Steffen Zschaler, director MDENet

Special Feature: A manifesto for subject-matter driven software
engineering
Contributed by MDENet member Federico Tomassetti.

As a Language Engineering practitioner, I have been living a contradictory experience since I started this

journey. On one hand I can see the results that certain practices bring to those who adopt them, while on

the other hand it is evident that these practices are ignored by most persons who could benefit from them.

It is very frustrating to see something with so much potential being neglected.

But to what practices am I referring?

I am referring to all practices which permit Subject Matter Experts (SMEs) who are not also developers to

precisely specify their knowledge, in a way that can be analysed to provide feedback to them and support

them in the development process, and then can be processed to obtain some result, like generating a

useful application or drive some automated process.

When I try to explain this I look for an existing term I could use, and for lack of a better term I tended to

use the term Domain Specific Language (DSL) in recent years. For the most advanced solutions I have

designed I had indeed defined one or more DSLs, however I could not avoid noticing how problematic this

definition was.

Discussions were often confusing because of the ambiguity of this term, which can indicate a simple

internal DSL built in Ruby in a couple of hours, as well as a rich solution designed in MPS, providing specific

editors and error checking.

The first source of confusion is the fact that internal DSLs and external DSLs are wrapped under the same

term, when they are quite different. In essence internal DSLs are just an attempt to bend as much as

possible a certain programming language (e.g., Ruby) to make the code appear almost as if it was written

https://community.mde-network.org/
https://strumenta.community/
https://community.mde-network.org/members/6701191
https://martinfowler.com/books/dsl.html

in a new language specifically designed for a certain kind of application. External DSLs are instead proper

languages, with their own tooling, so that errors reported and editor suggestions are specific to this new

language and not “borrowed” from a general-purpose language. Internal DSLs, in my experience, while

being simpler to implement, do not bring the same advantages proper DSLs with proper tooling can

provide.

The second reason for confusion was the fact that DSLs can be used to serve different kinds of users. One

important distinction is between developers and non-developers. I think both are categories well served

by DSLs, but I think it is most important to serve non-developers. The reason is that developers today

already have a way to formalize their expertise: they can use formal languages they are familiar with. Yes,

under certain circumstances they could benefit from DSLs making them significantly more productive,

but for non-developer SMEs the change would be much more fundamental, because without DSLs they

have no means to formalize their thoughts.

There is a problem with having the term DSL be used to indicate both DSLs for developers and DSLs for

SMEs. When SMEs encounter a DSL intended for developers, let’s say, for configuring a virtual machine,

they may understand DSLs are not intended for them, as they appear to be very technical languages for

software development specialists only.

As I discussed with other practitioners, I found how this frustration was shared. While this was not of

great consolation, at least I realized I was not the only one experiencing this. So, I started to reflect on this

with some of the practitioners I admire the most. We discussed the necessity to focus on solutions to raise

the level of abstraction specifically for SMEs.

We also agreed on the fact that this principle is not tied to any specific technology: years ago I would have

used Xtext to build a solution for this, nowadays I would use JetBrains MPS most of the time, a few years

from now I could be using different technologies. Even today, in certain contexts I use technologies that

are simpler to obtain results with a more limited effort or to integrate with particular tools the SMEs are

already familiar with. In other words, we do not see the specifical technical approach (e.g., MDE or DSL)

as the one most important to define what we do.

We wanted not to focus on technologies, but to focus on the problems which are preventing the adoption

of better tooling for SMEs. The main one is probably the lack of awareness. To address this, we would need

to talk to SMEs specifically, instead of just focusing on communicating with other Language Engineering

practitioners. There are also organizational issues we need to face, in helping organizations to change how

developers and SMEs collaborate.

These motivations led Markus Völter, Sergej Koščejev, and me to create the Subject Matter First

Manifesto. This is the result of months of work to refine the text and ensure we were capturing not only

our views but also the views of people in the community we hugely admired. Seventeen of them have

chosen to be the first signatories of the manifesto, and we are very grateful for their support.

You can find the result of this work at https://subjectmatterfirst.org/. I hope you can share these ideas

and work with us to promote them. Signing the Manifesto would be a very appreciated first step. We hope,

with your help, to encourage putting Subject Matter Experts at the centre of the stage, focusing on

providing them the best support possible for their work.

Special Feature: Modelling different kinds of uncertainty
Contributed by MDENet member Michalis Famelis.

In 2010, David Garlan wrote that “the reality of today’s software systems requires us to consider

uncertainty as a first-class concern”. Eleven years later, the only thing that has changed is that we now

live in an even more complex and uncertain world. Uncertainty permeates the systems we build, the

requirements for which we create them, the processes by which we develop them, the infrastructure on

which we base them, and the conditions under which we operate them. Uncertainty has many meanings

and takes many forms. It can arise by lack of knowledge (“epistemic”) or due to randomness (“aleatory”).

https://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/
https://subjectmatterfirst.org/
https://community.mde-network.org/members/8152940
https://doi.org/10.1145/1882362.1882389
https://doi.org/10.1007/978-3-642-35813-5_9

Sometimes new information can help resolve it; other times it can be inherently irreducible. Usually, we

think about uncertainty in terms of the context in which our systems need to operate; but we must often

deal with uncertainty internal to the workings of our systems. In fact, in 2020, Troya et al. catalogued six

types of uncertainty studied by the software modelling research community in more than 120 papers in

the last 20 years.

Walker et al. suggested thinking about uncertainty in terms of a spectrum from complete certainty to

total ignorance. Towards the “certainty” end of the spectrum, we have good enough models within well-

understood error margins. As we move away from certainty, we have models that vary with known

probability distributions. Less certain models cannot rely on such distributions and make do with the

relative likelihood of possible scenarios. Even more uncertainty means we cannot even rank these

alternative scenarios – but at least we know what the possibilities are. One more step away from certainty,

and we are as wise as Socrates in our recognized ignorance. And on the other end of the spectrum we have

total ignorance, Rumsfeld’s “unknown unknowns”.

Uncertainty concepts are found in many formalisms and modelling languages. Sometimes modelling

uncertainty is as simple as documenting the systematic error of the output of a function or as classifying

a bug as “unassigned” on a ticketing system until we figure out who should take on fixing it. People also

specifically model uncertainties with purpose-specific models, ranging from simple Markov chains to the

sophisticated standardization proposal considered at the Object Management Group. Facing a wide

range of flavours of uncertainty, we thus have an equally wide range of modelling approaches. How easy

is it to navigate their combinations and interdependencies?

My collaborators and I recently performed a case study to better understand this. We played the role of

developers building an app to help people stay safe during the COVID-19 pandemic. As part of early

requirements engineering, we created a persona called Emma, that lives in Quebec and wants to use the

app to decide how to get dinner. Emma has some dinner options (cooking in, getting take-out) and wants

to protect herself and her local community. We modelled Emma’s options using Tropos, a language for

modelling goals and requirements. We also modelled a publicly available epidemiological model of

COVID-19 in Quebec as a Bayesian network. We then connected these models (see figure), to show how

Emma could connect her personal decisions with their social impacts.

The Quebec epidemiological model and Emma’s goal model are both about uncertainty. The former

captures the inherent randomness of a stochastic phenomenon; the latter expresses the different

scenarios available to Emma. While modelling, we also documented our own uncertainty as modellers, i.e.,

about how to build the models. We worried about things such as “how should the two models be

connected?”, “how should we model this decision?”, “what should we do with missing values?” etc.

http://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1007/978-1-4419-1153-7_1140
https://en.wikipedia.org/wiki/I_know_that_I_know_nothing
https://en.wikipedia.org/wiki/Known_and_Unknown
https://www.omgwiki.org/uncertainty/doku.php?id=start
http://dx.doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.1007/978-3-319-45916-5_3
http://www.troposproject.eu/
https://www.marc-brisson.net/covid19-response/Epidemiologie-et-modelisation-evolution-COVID-19-au-Quebec_7-mai.pdf
https://www.marc-brisson.net/covid19-response/Epidemiologie-et-modelisation-evolution-COVID-19-au-Quebec_7-mai.pdf
https://en.wikipedia.org/wiki/Bayesian_network

Bayesian networks and goal models were good for capturing the uncertain elements of the problem

domain. However, capturing the uncertainty of the modelling process itself required a different set of

concepts. We captured these uncertainties with DRUIDE, a specialized modelling language which allowed

us to decouple modelling uncertainty about the design of the models from uncertainty internal to the

problem. The experience made it clear that the different types of uncertainty required very different

modelling approaches and treatments.

I have been working for over 10 years on this kind of “design uncertainty”. My goal is to mine it from the

development context (e.g., developer conversations) and / or to capture it in (semi-)formal

representations. I then use these to perform automated reasoning that preserves uncertainty, with the

goal to provide feedback to modellers to assist them in building better models. Key to this vision is a more

general idea: that understanding the different meanings of uncertainty is necessary if we are to create

modelling infrastructure that lets practitioners reason about many kinds of uncertainty at once,

depending on how they are modelled, how they interact, and how they affect each other. Achieving this

deeper understanding can only happen in a community like MDENet, that allows researchers and

practitioners of many different backgrounds and expertise specialties to freely exchange their unique

perspectives.

Highlights, News, and Events
MDENet research demonstrations
We have held two highly successful research demonstration workshops in June and July. You can find

recordings of the demonstrations on the MDENet YouTube channel. The first demonstration workshop

concentrated on MDE on the cloud with a presentation by Dimitris Kolovos from the University of York

on the Epsilon Playground, a web-based platform to enable easy experimentation with an advanced

model-management platform. The second presentation was given by Panagiotis Kourouklidis and Joost

Noppen from BT Research and Development on using MDE to manage machine-learning algorithms in

practical cloud-based deployment.

The second demonstration workshop focused on transforming models and tracing change; that is some of

the automation support offered by MDE. Artur Boronat from the University of Leicester presented

YAMTL a tool for transforming models without the need for an external transformation language. Joe

Habgood from the High Integrity Expertise Centre at Capgemini Engineering spoke about their approach

towards traceability and how MDE technologies are helping Capgemini Engineering track changes across

large, multi-team software development efforts.

Conferences of interest
SiriusCon’21
Sirius is a tool for building graphical domain-specific modelling languages developed by Obeo and the

Eclipse community. Obeo regularly organise a short conference with talks about the use of Sirius in

various domains and general MDE topics. The program for this year’s conference (15 to 17 June) is

available here. As in every year, the conference featured an overview of new developments in Sirius, not

least the new Sirius Web for building diagrammatic editors on the web. This was complemented by an

overview of applications of graphical modelling in domains as varied as low-code software development,

systems engineering, infrastructure as code and cloud deployment, and clinical pathway design. Video

recordings of the talks are not yet available from the conference website but are usually published some

time after the event.

17th European Conference on Modelling Foundations and Applications (ECMFA’21)
ECMFA is one of the key academic conferences on model-driven engineering. This year’s edition was held

online, organised by the strong MDE research community in Bergen, Norway. As in every year, the

conference is embedded in the context of STAF – the Software Technologies: Applications and

Foundations federation of conferences – which offered a rich program of complementary software-

http://dx.doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.1007/s10270-017-0594-9
https://doi.org/10.1109/TSE.2019.2924006
https://doi.org/10.1109/ICSE.2012.6227159
https://doi.org/10.1145/2568225.2568267
https://www.youtube.com/channel/UCbaSQPliKr2ftWwgYxBN3vg
https://community.mde-network.org/members/6700314
https://www.youtube.com/watch?v=Cfm_iL_Y7Sg
https://community.mde-network.org/members/8057844
https://community.mde-network.org/members/6700189
https://community.mde-network.org/members/6700189
https://www.youtube.com/watch?v=pPhCqAtQin0
https://www.youtube.com/watch?v=pPhCqAtQin0
https://community.mde-network.org/members/6759623
https://www.youtube.com/watch?v=wUGSHujCrRE&pp=sAQA
https://community.mde-network.org/members/7147687
https://community.mde-network.org/members/7147687
https://www.eclipse.org/sirius/overview.html
https://www.siriuscon.org/
https://www.eclipse.org/sirius/sirius-web.html

engineering events, including the Transformation Tool Contest, which this year focused on MDE

challenges in translating model queries into SQL and in dynamically adapting workflows. The proceedings

of ECMFA are freely available in the Journal of Object Technologies here. Two big topics this year were

modelling of uncertainty and modelling for the railway domain.

Looking ahead
In MDENet, we have put together an exciting programme of research demonstrations and we also expect

to start our MDE training events as well as run our first thematic workshop on MDE for AI and Data

Science (more detail on this will be published soon). There won’t be a research demonstration workshop

in August as we take a break for the summer, but we will continue on 29 September with a workshop on

large models and model optimisation, followed by a workshop on 27 October on model synchronisation

and comparison and a workshop on model management on 24 November. We look forward to welcoming

you at these research demonstrations – please RSVP on the events on the MDENet member platform

community.mde-network.org.

The top academic conference on MDE, MODELS will take place virtually from 10–15 October.

Registration will open soon at modelsconference.org. The conference features technical papers as well

as tool demos, an educators’ symposium, and a broad range of workshops.

Finally, you should check out the funding offered by MDENet. We have recently opened our seedcorn

fund, which you can apply for on a rolling basis, and we expect to open our dissemination and

commissioning funds very soon. More information about these funds can be found on the member

platform in the Funding topic.

Community Call
We are looking for ideas and contributions for future newsletters. If you have something to contribute or

want to provide feedback on this newsletter, do get in touch at mdenet@kcl.ac.uk.

MDENet lives through the engagement of its members. We are looking forward to your contributions to

the network! If you want to share your views, ask a question, find new collaborators or simply want to

learn more about MDE, join our community at community.mde-network.org. There, you can also find and

add links to events that might be of interest to the wider MDENet community.

https://www.transformation-tool-contest.eu/
http://www.jot.fm/contents/issue_2021_03.html
https://community.mde-network.org/
http://www.modelsconference.org/
https://community.mde-network.org/topics/5310719
mailto:mdenet@kcl.ac.uk
https://community.mde-network.org/

