
A glossary of model-driven
engineering
Model-driven engineering (MDE), the thing that MDENet is all about, has been known under

several different names and acronyms over the years, and you may find yourself confused

trying to make sense of the plethora. We are here to help with this glossary of common

alternative labels for MDE. If you have heard about any of the below, chances are you will find

something of interest in the MDENet community.

To help with the explanations, the figure below gives a summary of some key terms in MDE.

MDE focuses on the development of software via so-called “models”, high-level

representations of an aspect of the software solution. Models are expressed in so-called

“modelling languages”; these can be text-based languages or can be graphical, diagrammatic

languages. Often, modelling languages will be developed for a specific purpose in a specific

domain (so-called domain-specific modelling languages or DSMLs), but general-purpose

modelling languages also exist. “Software implementations” (also known as programs) in a

“programming language” are then used to “implement” the solution captured by a model or a

set of models. This implementation may be created manually, but sometimes is created through

an automated process called “code generation”. Code generation is one type of

model-management activity. Other model-management activities include analysis, refinement

or model-based testing. Different variants of MDE differ in how they interpret and realise

these concepts. We list the most prominent different variants below and try to explain their

differences; though it is worth noting that some of these labels have been used

interchangeably in the past.

1. Model-Driven Engineering (MDE). This label most typically describes the general idea of

developing high-level modelling languages (often, but not always, domain-specific

modelling languages) that are then used to describe different aspects of a

https://community.mde-network.org/


software(-intensive) system in models, undertake predictive analysis and validation on

these models (by using semi-automated analysis and reasoning tools), communicate

and change design decisions, and, finally, generate a software implementation.

2. Model-Driven Development (MDD). This is sometimes used as a synonym for MDE.

3. Model-Based Engineering/Development (MBE/MBD). This is a subset of MDD/MDE where

there is less automation in the production of the final software implementation.

Software is still designed through models primarily, the production of the final software

implementation remains manual rather than using automated code generation.

Computer Aided Software Engineering (CASE) was a precursor of the MBE/MBD form of

software development, peaking in the 1990s. MBE/MBD approaches are often based

on general-purpose modelling languages; that is modelling languages that reflect

general coding concepts rather than domain-specific concepts about the problem to be

solved. The Unified Modelling Language (UML) is the most well-known such “general

purpose” modelling language, which emerged from the “methods war” of the early

1990s and has since grown as an OMG standard. Early MDE work focused primarily on

generating code from UML (or making UML executable via interpretation). Later work

looked at allowing UML to be customised for specific domains through profiles and

stereotypes. Most recent work in MDE appears to focus primarily on domain-specific

modelling languages.

4. Model-Based Systems/Software Engineering (MBSE). Initially, the S stood for “systems” and

emphasised the fact that many software-intensive systems are more than just software

and that there is a need to integrate the modelling of the software with the modelling

of the remainder of the wider system. SysML is a prominent modelling language in this

particular form of MDE. More recently, the abbreviation has also seen use as a

shortening of the “software” variant. Similar to MBSE, there are also MDSE--where the

S is sometimes for Software and sometimes for Systems--and MDSD.

5. Model-Driven Architecture (MDA). This is a very specific form of model-driven

engineering focusing primarily on the incremental refinement of models from

“computation-independent models” (CIMs, models at the requirements level) via

“platform-independent models” (PIMs) to “platform-specific models” (PSMs) from which

the final source code can be generated. MDA is an OMG standard that was a key driver

for technological innovations like the MOF 4-layer architecture and for a good deal of

initial interest in MDE. Its central promise was to address vendor lock-in by allowing for

the generation of different PSMs from the same PIM, thus reducing the cost of

changing platform vendor to the cost of producing (or procuring) a different

model-to-model transformation and code generator.

6. Lowcode. Lowcode has a largely parallel history, tracing back to innovations like Java

Beans or Borland’s Delphi. Some modern-day vendors of lowcode technology have a

direct MDE background, however. A key promise of lowcode is to allow visual

development of applications by plugging together existing components. The technology

has strong foundations in component-based software engineering and typically defines

a standard configuration interface / API for the components enabling the lowcode

platform to easily ingest new components and make them available to application

developers. Lowcode platforms (e.g., Microsoft Power Apps, Google AppSheet or

https://en.wikipedia.org/wiki/Computer-aided_software_engineering
https://www.omg.org/spec/UML/About-UML/
http://omg.org/
https://sysml.org/
https://omg.org/mda
http://omg.org/
https://www.omg.org/spec/MOF/
https://en.wikipedia.org/wiki/JavaBeans
https://en.wikipedia.org/wiki/JavaBeans
https://en.wikipedia.org/wiki/Delphi_(software)
https://powerapps.microsoft.com/
https://www.appsheet.com/


Outsystems) typically provide support both for designing and implementing a piece of

software and hosting it so it can be made available to end users via the Internet.

Lowcode often targets “end-user programming” or “citizen developers”.

https://www.outsystems.com/

