
(c) Kevin Lano 1

Legacy software causes major social and economic problems:

Program Translation using MDE

Kevin Lano

➢ US Government, 2020: national COVID measures
delayed by legacy software problems

➢ Commonwealth Bank of Australia: modernising
applications from COBOL to Java cost $750 million & 5
years

➢ JP Morgan: 2+ years to modernise Athena from Python
2 to Python 3

(c) Kevin Lano 2

Program Translation using MDE

Old
software;
old
platforms

Specifications
Modernised
software
for new
platforms

Our solution is to abstract legacy code to a
specification, then forward-engineer:

(c) Kevin Lano 3

Innovation:
➢ translation via

intermediate
language (UML)
provides
specification of
system

➢ reduces number
of translations
needed

➢ increases
flexibility.

JS

C

Java

Python

Swift

C++

Go

Existing rule-based approaches need N*M
individual translations

JS

C

Java

Python

Swift

C++

Go

UML

Our approach:
N abstractions

(c) Kevin Lano 4

MDE Process for Language Translation

Translation steps:

• Abstraction of source program into a UML/OCL
specification – captures precise semantics

• Forward engineering of specification into target language.

Many MDE tools already provide forward engineering from
UML/OCL into multiple target languages.

Thus main new work is reverse-engineering step + program
representation in UML and OCL.

Program Translation using MDE

(c) Kevin Lano 5

Program Translation using MDE

(c) Kevin Lano 6

Program Translation using MDE

MDE Process for Language Translation

• Antlr parser for source language L1 used to produce parse
trees, input to abstraction transformation for L1, written
using CSTL

• Output is text UML/OCL specification, consisting of class
specifications with data features + operations.

• OCL libraries added to represent files, processes, reflection,
dates, exceptions and iterators, not present in standard OCL.

• Forward engineering using AgileUML to map abstracted
specification to target language L2.

Other MDE tools could be used for forward engineering.

(c) Kevin Lano 7

Program Translation using MDE

Program abstraction

Examples of CSTL abstraction rules for Java expressions &
statements:

expression::
_1 ? _2 : _3 |-->if _1 then _2 else _3 endif
(_1) _2 |-->_2->oclAsType(_1)
_1 instanceof _2 |-->_1->oclIsKindOf(_2)

statement::
if (_1) { _2 } |--> if _1 then _2 else skip
for (_1 _2 : _3) _4 |--> for _2 : _3 do _4

(c) Kevin Lano 8

Program Translation using MDE

OCL extension types and libraries

• Function, map and reference types Function(S,T), Map(T)
and Ref (T).

• OclDate: dates and times.
• MathLib: Byte processing and bitwise operators.
• OclType extended to provide full reflection capabilities.
• OclException.
• OclIterator represents iterators for collections, generator

functions and database result sets.
• OclFile represents files and streams.
• OclProcess models threads and OS processes.
• OclDatasource models SQL databases, TCP sockets and HTTP

connections.

(c) Kevin Lano 9

Program Translation using MDE

Issues and problems

• Programming languages use side-effecting expressions,
whilst OCL does not: separately represent pre/post side-
effects and query semantics

• Language libraries can be very extensive (eg., Java): only the
core datatypes and features can be represented

• Unstructured control flow: goto, switch, etc.: replace by
structured statements.

• No translation of GUI code

(c) Kevin Lano 10

Program Translation using MDE

Evaluation and comparison

• Abstraction mappings to UML/OCL from Java 6/7, ANSI C,
JavaScript, Cobol85 and VB6 have been developed.

CSTL Script Size (LOC) Effort

Java2UML 2955 5pm

C2UML 2160 2.5pm

JS2UML 793 2pm

VB2UML 1230 2pm

Cobol85 3284 2pm

Averages 2084 2.7pm

About 35LOC/pd

(c) Kevin Lano 11

Program Translation using MDE

Evaluation and comparison

Grammar coverage:

Language Abstraction
rules/Grammar
cases

Coverage

Java 345/386 89%

C 138/153 90%

JavaScript 258/324 80%

VB6 320/412 77%

For C, 158 of 179 library operations are abstracted (88%).
For JavaScript, 39 of 53 library components are abstracted (74%).
For VB6, 197 of 229 built-in elements (86%).

(c) Kevin Lano 12

Program Translation using MDE

Evaluation and comparison

Functional correctness evaluated by tests on source & target
versions of translation cases. Compute percentage of test
results which agree.

• This measure of accuracy is computational accuracy.
• For Java 6/7 mappings to Python, Swift, C#, C++ and Go,

used 100 evaluation cases.
• For C mappings to Swift, C# and Go, used 70 cases.
• For JavaScript mapping to Python, used 100 cases.
• For mapping VB6 to JavaScript, used 100 cases.
• For mapping Cobol85 to Java, used 60 cases.

(c) Kevin Lano 13

Program Translation using MDE

Evaluation and comparison: accuracy

Target
languag
e

From
Java 6/7

From C From
JavaScri
pt

From
VB6

From
Cobol85

Python 93% 95% 83%

Swift 96% 84%

C# 96% 90%

Go 90% 91%

Java 8 98% 77%

C++ 93%

C 86%

(c) Kevin Lano 14

Program Translation using MDE

Evaluation and comparison: accuracy

Compared to other translation tools:

• Java2python only achieves an accuracy of 38.3%
on similar dataset of Java to Python examples

• Transcoder achieves 68.7% accuracy for Java to
Python

• Our results are significantly better than these
scores.

(c) Kevin Lano 15

Program Translation using MDE

Related work:

Main approaches for program translation:
• Heuristic manually-created rules
• Machine learning approaches inducing implicit rules

from examples in source and target languages

For these, translator construction must be repeated
for each pair of languages under consideration.

Second approach requires large datasets of program
examples + learned knowledge is only implicit.

(c) Kevin Lano 16

Program Translation using MDE

Related work:

Other MDE approaches include:
• MoDisco and REMICS: structural representation of

legacy applications for migration and
modernisation.

• Gra2Mol and GReTL text-to-model languages to
perform program abstraction to models: ATL-style
languages – more complex than CSTL.

• Reverse-engineering of Java bytecode to
statemachines (Sen et al, 2016).

• Formal semantic approaches also used for reverse-
engineering of database schemas.

(c) Kevin Lano 17

Program Translation using MDE

Our contributions

• Detailed semantic model of source programs, to
enable semantically-correct translations + reduce
retesting cost

• Precise and explicit abstraction rules which can be
edited and configured

• Set of OCL library components which can be used
for OCL specification of new applications

• Systematic procedure for building program
abstractors based on language grammars.

(c) Kevin Lano 18

Program Translation using MDE

Conclusions and future work

• Shown that program translation approach using
MDE can be effective for practical program
translation tasks.

• Approach enables users to customise translation
rules used, provides rigorous semantically-based
abstraction & forward-engineering process.

• Future work includes using symbolic machine
learning to automate construction of abstraction
mappings.

