
MDD/MBT at ProRail (ERTMS)

Axini Model Based Testing

MDD/MBT at ProRail (ERTMS)

Welcome, nice to meet you!

• A complex system in a complex environment for which
ProRail applied MDD with MBT from the start of the project.

• ProRail saved (at least) 5.000 testing hours (on a project of
20.000 hour).

• The project was ready half a year before deadline (for a 2
year project).

• ProRail decided to use SAFe (this was the first project).
• And of course there was Covid.

3

In a nutshell

Who am I?

4

Overview

• Introduction ProRail and Axini
• The ETIS system (part of ERTMS)
• Why are systems like ETIS hard?
• The Axini Modeling Platform
• Lessons learned

ProRail is a Dutch government organization responsible for
• the maintenance and extension of the national railway

network infrastructure (not the metro or tram),
• the allocation of rail capacity, and
• controlling rail traffic.

6

ProRail

• Every day 5.500 trains on the 7.000 kilometer (4.350 mile)
long Dutch rail track

• Assets on the tracks
• 11.578 signals,
• 6.256 switches,
• 2.393 grade crossings,
• 398 stations,
• 68 movable bridges,
• 26 tunnels.

• Yearly 22.000 issues and 4.654 calamities.
• 2022 budget: €892M

7

ProRail in numbers

8

ProRail, the biggest cyber physical
system in the Netherlands?

Incidents

9

• https://www.youtube.com/watch?v=ccLvf
WaKPyQ

https://www.youtube.com/watch?v=ccLvfWaKPyQ

11

ERTMS technology

12

ERTMS Technology (Driver Machine
Interface)

13

ERTMS technology (traffic control)

14

ETIS (ERTMS train information system)

How to test such a system?

What would you like to hear?

• More about Axini MBT and the Axini Modeling Platform
• More about why it’s so difficult to test systems like ETIS
• More about the experience and lessons learned

Some options

How to test complex
systems?

How to make reliable
software? 18

Challenges for complex systems
19

System

ConnectivityVariabilitySize

System

System

10

10

10

10 10
10

10
10

Assumption:
10 x bread, meat, veggies.
Sandwich: bread, 2 meat, 2
veggies.
#sandwiches: 10^5

Assumption:
10 interactions per Interface
Total # interactions 10^4

Boehm’s law: The cost of bugs grows
exponentially with time

DevelopmentRequirements Design Integration Acceptance Production

DevelopmentRequirements Design Integration Acceptance Production

Shift left

20

Problems come at/after integration

DevelopmentRequirements Design

DevelopmentRequirements Design

DevelopmentRequirements Design Integration Acceptance Production

21

• Complex systems need very many
test-cases.

• Some test-cases on complex
systems can only be done on the
integrated system.

• This is a restriction of BDD. MDD can
test more and more thoroughly.

Types of test automation

• Scripting: automates test-execution
• BDD (Behavior Driven Development)
• TDD (Test Driven Development)
• Unit-tests
• …

• Model Based Testing: automates the entire test-process.
• MDD (Model Driven Development)

• Only BDD and MDD relate requirements and testing

22

23

Test tool comparison
Process Hand BDD

Design
Make specification

Make model

Test

Make test

Predict outcome

Script test

Execute test

Evaluate outcome

Manual step

Automated

MDD: couple requirements, design and
test

DevelopmentRequirements Design Integration Acceptance Production

Shift left

24

Axini MDD/MBT in a nutshell

25

Some examples in High-Tech

• Interface modeling and testing
• Complex business logic modeling and testing
• Systems modeling and testing

• Thermo Fisher Scientific
• ProRail
• ITAB

26

Some examples in Finance

• Example clients: Achmea, Campina Pension Fund, Robeco
Investment Bank, Top 3 Bank NL

• Business rules and calculation rules
• Pension calculations,
• URM,
• Disbursement (Dutch: Excasso),
• Investment portfolio optimization,
• Life and non-life insurances,

• Client communication (letters, emails, etc.)
• Online transactions and batches pension administration.
• Pension administration (rest-portfolios).

27

28

29

Axini Modeling Platform (AMP)

A.I.

Model AMP Adapter

System

Axini automates the entire test process based on the specification/model.
• Automated test-case generation (including test-data).
• Automated test-case execution.
• Automated test-case evaluation.

Axini MBT TomTom analogy

30

De crux of the Axini MBT solution is the model. One can
compare this approach with a TomTom.

• A TomTom does not explicitly keep track of routes,
but derives these from a map, viz. model. In a
comparable way, Axini generates test-cases from
the model.

• Just as a TomTom can dynamically change routes,
Axini can dynamically derive test-cases. For
example for good weather/bad weather, to zoom in
on changes/requirements, to work around known
errors, etc.

• Just as with a TomTom, with Axini the test-cases are
immediately up to date after an update of the
model.

31

Test tool comparison
Process Hand BDD Axini

Design
Make specification

Make model

Test

Make test

Predict outcome

Script test

Execute test

Evaluate outcome

Manual step

Automated

MDD vs BDD

32

Hoe doe je dat?

MDD MDD MDD

BDD BDD/MDD MDD

Handmatig BDD BDD

Agility

C
om

pl
ex

ity

L

H

33

Back to ETIS

• 4 parallel processes
• 10 test-sets

• Each test-set focusses on a different aspect

• Test-cases with a depth of +4000 steps
• 6 interfaces

• 4 with big XML XSDs
• 2 with a big XML XSD, but also encapsulated ETCS messages
• The XMLs can become rather large

34

The ETIS model

35

Lessons learned

AML provides the required modeling power
• States and transitions with data (simple and complex

types) and time
• Modules, super-states and functions for structuring
• Model configuration and parameterization
• Multiple processes
• Complex data-types

36

It is possible to model systems of the size
of ETIS

• Versioned models
• Visualization
• Exploration and debugging
• Scalable, big state-vectors O(100+)
• CI/CD integration
• External git repo integration (e.g., GitLab)
• Standardized and fast adapters

37

Required features

• Smart path coverage testing strategies
• Constraint solvers
• Also the unlikely test-cases are generated
• Many bugs were found during development

38

Almost no integration problems

• Only unit-tests and MBT.
• and some manual tests, performance tests, etc

• A passing MBT test is the definition of done.
• Modeling catches errors and ambiguities.
• Modelers can help programmers (and vice versa).
• The whole team should own the models (and be able to

model).
• Have a dedicated modeller in your team.

39

MBT and SAFe go together well

• Start modeling immediately at the start of the project.
• This requires input from architects/designers etc.

• Gated MBT in CI/CD.
• MDD/MBT gives project managers control.

40

Lessons learned, MBT in practice

• Start small
• MDD/MBT is a paradigm shift

• The start is hard
• It’s new for everyone
• You need information that is not yet there/complete

• Modeling is a real effort
• Modeling (concurrency) is not for everyone.

41

Lessons learned

• ProRail saved (at least) 5.000 testing hours (on a project of
20.000 hour).

• The project was ready half a year before deadline (for a 2
year project).

• 0.6 FTE modeler on a 4 FTE team.

42

The numbers

• Join tomorrow’s Axini modeling workshop sneak preview!

43

But how?

Conclusion

44

Conclusion

46

Conclusion

Questions?

Free 3 hour workshop?

Contact Machiel van der Bijl
vdbijl@axini.com
+31 6 1642 6332

• Site: course02.axini.com

• Password: testnet22

• User name: see paper

How to connect?

Model Based Testing with the

Axini Modeling Platform
and the infamous

Coffee Machine

Axini Modeling Language (AML)
• process + data language

– inspired by Promela (SPIN) and LOTOS

• model consist of parallel processes

• communication over hand-shake channels
– external: communication with SUT
– internal: communication between processes

behavioral part:
• stimuli (inputs)
• responses (outputs)
• (non-deterministic) choice
• repeat
• states / goto

data part:
• Ruby-like, strictly typed
• messages can be received and

send
• label (name)
• parameters (attributes)

• process can have variables

Largest AML
model: >10k loc.

only needed
today

52AML is implemented as a Ruby DSL: Ruby can be used as preprocessor.

A process in AML is
mapped upon a

(symbolic) labelled
transition system.

Semantics

Hello, Tea Machine
name of the external channel

timeout for all responses

53

choice
declarations keep the same

54

states and goto

convention:
states start in

column 1

55

repeat

break out of the loop

56

AML Quick Reference
Card

57

• Names of labels, states, variables are 'strings' in quotes.

• Curly brackets { … } can be used to group statements.

• Statements are separated by newlines (or ';').

For the 'Coffee Machine' exercise, only
the following statements are needed:
• send & receive (without any options)
• choice

• repeat

• state & goto

• Modeling and testing a beverage machine, offering
– coffee, tea, and … lemonade

• First steps with the Axini Modelling Platform (AMP)

58

Laboratory: Coffee Machine

Goal is to make a model of the SUT.
• alternative, high-level abstraction of the SUT.
• direction of messages (stimuli, responses) is

from the point of view of the SUT.

59

Laboratory: Coffee Machine – HOWTO

Follow instructions:
1.1 Exploring AMP
1.2 Extending the model
1.3 Testing
1.4 Lemonade?!

Ignore the references to the
'SmartDoor' exercise.

Discussion and Evaluation of the

Coffee Machine
Exercise

state 'start'

choice {

o { receive 'button_coffee' }

o { receive 'button_tea' }

o { receive 'button_lemonade' }

}

choice {

o { send 'coffee' }

o { send 'tea' }

o { send 'lemonade' }

}

goto 'start'

61

Coffee Machine

Too loose: allowing too
much behavior.After ?button_lemonade, we

observe either !lemonade,
!coffee, or !tea.

state 'start'

choice {

o { receive 'button_coffee' ; goto 'coffee' }

o { receive 'button_tea' ; goto 'tea' }

o { receive 'button_lemonade' ; goto 'lemonade' }

}

state 'coffee'

send 'coffee'

goto 'start'

state 'tea'

send 'tea'

goto 'start'

state 'lemonade'

choice {

o { send 'lemonade' }

o { send 'coffee' }

o { send 'tea' }

}

goto 'start'

Using repeat instead of states/goto.
repeat {

o { receive 'button_coffee'; send 'coffee' }

o { receive 'button_tea'; send 'tea' }

o { receive 'button_lemonade'

choice {

o { send 'coffee' }

o { send 'tea' }

o { send 'lemonade' }

}

}

}

62

Coffee Machine (exact?)

Using a state variable, which
remembers the last beverage.

We also have to use the update
and constraint options of a

label here.

var 'last', :string, ''

repeat {

o { receive 'button_coffee'; send 'coffee', update: "last = 'coffee'" }

o { receive 'button_tea'; send 'tea', update: "last = 'tea'" }

o {

receive 'button_lemonade'

choice {

o { send 'lemonade', constraint: "last == ''" }

o { send 'tea', constraint: "last == 'tea'" }

o { send 'coffee', constraint: "last == 'coffee'" }

}

}

}

63

Thank you!

Clients come to us for

64

• Highest quality possible

• Lower time to production (30% and more)

• Project control. No errors late in the process.
Deliver what you promise.

• Communication between business and IT

How do we help?

DevelopmentRequirements Design Integration Acceptance Production

DevelopmentRequirements Design Integration Acceptance ProductionWith Axini

Shift left

Axini platform and approach scales

DevelopmentRequirements Design

DevelopmentRequirements Design

DevelopmentRequirements Design Integration Acceptance Production

Shift left

• Speedup: prevent rework and
waste of time and resources:
detect errors early and prevent
them,

• Control your software
development: immediate
feedback on what requirements
are implemented correctly.

How to shift left?

67

Axini
• Our dream is to optimize the entire software development process.

• Our current offering optimizes the verification and validation (V&V) of systems.
From a language to write down requirements all the way to automated testing.

• We offer a platform that automates V&V: test-automation without the need to
program test-scripts and test-data.

• We are a technology partner (no/limited consultancy). We work together with
consultancy partners or directly with clients.

• We are primarily active in Finance, Rail and High-tech.

68

• BDD is a Test-First, Agile practice that defines and
automates tests as part of specifying system behavior.

• BDD is a collaborative process that creates a shared
understanding of requirements between the business and
the Agile Teams.

• BDD tests are business-facing scenarios that attempt to
describe the behavior of a Story, Feature, or Capability
from a user’s perspective.

• These tests ensure that the system continuously meets
the specified behavior even as the system evolves. 69

Behavior-Driven Development (BDD)

Example Cucumber
Feature: Managing users

As an admin

I am able to add new users

Background:

Given I am logged in as an administrator

And I go to the users page

Scenario: Adding a new user

When I choose to add a new user

70

BDD: Couples requirements and test

DevelopmentRequirements Design Integration Acceptance Production

Shift left

71

What is Axini Model Based
Testing?

72

