
MDE for

Federico Tomassetti, Steffen Zschaler and Meinte Boersma

The MDENet “MDE for ...” series introduces ways in which MDE can be applied to address challenges in a wide range of different domains. Intended

to help you identify how MDE might help you, each report identifies some key challenges in the domain, describes potential MDE applications through

concrete case studies, and clarifies some of the key MDE concepts that will help address these challenges.

In this document, we want to collect some examples of important organizations which have used MDE to change the way in which they developed

software for tax and payroll calculations. This approach is based on Domain Specific Languages (DSLs). DSLs permit better collaborations between

experts in tax system and payroll calculation and developers, and using them results in faster development cycles, reduced number of errors, and

reduced development costs.

We will see four different cases:

• Sistemi, the market leader in Italy for tax consultants software

• A large multinational, present in over 50 countries (name is confidential)

• The Dutch Tax and Customs Administration (Belastingdienst)

• DATEV, a German entity with over 400,000 customers

MDENET
RESOURCES

Tax & Payroll
Calculations

mde-network.org MDE for Tax and Payroll Calculations 1

https://mde-network.org

1. CASE STUDIES

MDE for Tax & Payroll Calculations 2mde-network.org

A leading company in Italy for tax consultants software
We have worked with Sistemi, a leading Italian company in the software for tax consultants market.

This company has over 40 years of history. They started developing software for tax consultants a very long
time ago. Decades ago they made a choice that has been paying off: they developed a proprietary language to
define specific concepts related to their domain. So their language had support for concepts like quarters and tax
brackets, which are not typically part of a common programming language.

The Challenges

Challenge 1: Supporting multiple platform

From the early stage, the company needed
to support multiple platforms. While the
platforms changed over time the need
to support more than one remained
constant. With traditional development
techniques that would have required a
significant increase in development costs
and possibly a reduction in quality, as each
implementation would have been tested by
fewer users.

Challenge 2: Technological transformation

The technologies used to deliver the
application logic varied in time. For example,
the applications transformed from desktop
applications into web applications. With
traditional development techniques that
would have required a complete rewrite of
the applications, at a very high cost and an
unsustainable time to market.

Challenge 3: Ensuring continuity

Compatibility with the past was a strong
requirement. This was very difficult to
achieve when paired with the evolution of
technological platforms. With traditional
software development techniques this
would have brought unsustainable costs.

Why is this important?

Because code written in their proprietary language survived

across several technological changes. The competitors that

shared such a long history and they did have to regularly

rewrite their software over time.

This company instead originally wrote applications that had a

terminal interface - do you remember the 80x25 screens? Over

time they needed to replace the software with desktop GUIs

for Windows machines. And then 10-15 years later the time

came to move to web applications.

And they did, but without the need to rewrite the logic for tax

calculations. How is that possible? They simply worked on their

DSL engine and adapted it to produce desktop applications first

and web applications later.

This meant that they did not have to stop, and redo their

entire core product, with a huge investment and a significant

slowdown in development.

In their case adopting a DSL for developing the solution

meant the knowledge poured by tax and payroll experts

was still reusable even when technologies changed. This is

a major difference with traditional software development,

where software has to be rewritten to accommodate major

technological transformations.

The Benefits

Decoupling logic and technology implementation

Separating logic from technology implementation enabled

changing technology while maintaining logic: a routine that

was written 40 years ago is still valuable even though the

underlying tech stack has changed completely.

Supporting multiple platforms

By combining a DSL with multiple generators, it was

possible to support multiple targets without increasing

costs.

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 3mde-network.org

1. CASE STUDIES

A large multinational, present in over 50 countries
A few years ago we worked with a large multinational that was producing a wide range of software for tax
consultants, accountants, and payroll processing. This company was and is still present in over 50 countries. And
some of those countries presented different rules for different areas: think about the federal states like the USA
or Germany, with different taxes for each state. Or countries like France, with special rules for “Metropolitan
France’’ and their territories far away from Europe.

These companies have to face very significant challenges due to their business. On the basis of a single platform,
they need to have specialists from all over the world define the specific rules for each jurisdiction, and keep them
up-to-date year after year. Tackling these challenges with traditional development techniques can prove very
expensive.

The Challenges

Challenge 1: Handling variability

The challenge faced was in how to reuse
one technology stack in different legal
environments, each of which has their own
set of tax rules which need to be captured
and implemented faithfully.

Challenge 2: Supporting different teams of
domain experts

A centralized development team had to
support multiple domain experts teams,
working in different natural languages.

The Benefits

Agile evolution of business logic

Separating logic and technology allows flexibly
exchanging the logic on top of the same
technology stack

Validation by domain experts

Capturing the logic using an explicit modeling
language (a DSML) these can be captured
more easily and validated by domain experts
in the relevant jurisdictions.

The MDE Approach

This company therefore developed its own language,
which specialists can use autonomously to define the
logic for tax calculation and verify it. Different experts
all over the world can get easily accustomed to it in a
matter of hours.

This reduced the costs for making experts and
developers communicate, sped up development, and
reduced a lot of errors as less misunderstandings are
possible.

In this case a DSL permitted to have a scalable
approach to capture knowledge about tax calculations
and have this knowledge integrated with the software
platform developed by the technical team.

Parallelization of development

By adopting a DSL, domain experts were able
to work independently. This had the potential
for reducing bottlenecks because the central
technology team does not have to develop
each system for each new jurisdiction.

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 4mde-network.org

1. CASE STUDIES

The Dutch Tax and Customs Administration
(Belastingdienst)
The Dutch Tax and Customs Administration has to face one important challenge: to update their software every
year, based on the changes in fiscal legislation.

One has therefore to study the tax code (Belastingwetten), examine the difference with the support of tax and
legal experts, and consequently update the software in a short time.

If we consider that hundreds of billions of Euros are at stake, as the tax returns of millions of citizens are
processed, we can understand the importance of getting calculations exactly right.

The Challenges

Challenge 1: Complexity and frequent changes

The tax code changes every year, and changes
are complex to interpret. They can also have
consequences which are not easy to foresee.

Challenge 2: Time constraints

Every year tax returns have to be calculated
according to a pre-determined schedule, therefore
the time available to perform changes to the code
is limited and cannot be extended.

The MDE Approach

The Dutch Tax Agency has defined a standard
for controlled Dutch called RegelSpraak. With
RegelSpraak, rules for tax calculations (extracted
from the tax law / code with the intent to automate)
can be defined in a precise and unambiguous way
that lends itself to direct automation. Later on,
the Dutch Tax Agency developed ALEF, an IDE
for several DSLs, including an implementation of
RegelSpraak, that allow rule analysts to specify
complete taxation systems that require zero coding
to deploy to production.

Citing Diederik Dulfer, Architect Business
Rules Management at Dutch Tax and Customs
Administration, “MDE is the future and the Tax and
Customs Administration is already well on its way!”.

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 5mde-network.org

1. CASE STUDIES

The Dutch Tax and Customs Administration
(Belastingdienst)

In the case of the Dutch Tax Administration, because of the DSL it is very easy to trace the tax rules written by
legal experts to the original laws, and when laws are modified, changes in the DSL code can be applied with limited
effort and with confidence. Tax rules act as their own historical record, because they are explicitly versioned with
each version having a validity range. In addition, tests can be written directly next to the rules under test, and
these tests are executed by the ALEF tool all the time.

The Benefits

Make Domain Experts independent

Providing a set of DSLs that closely mimic how
the tax code is written enables civil servants to
write, deploy and update (core parts of) taxation
software systems independently.

Built-in validation facilities

Enabling civil servants to validate their work
through explicit tests which are continuously
running. That enables civil servants to check that
their implementation matches the (intention of the)
tax law.

Reduce costs

Using ALEF reduces the communication necessary
between civil servants and software developers
significantly, reducing costs across the whole
process. (This includes opportunity costs due to
developers being hard to find.)

Explainability

Using tax rules written with ALEF means that
explaining tax calculations can be automated as
well: citizens can be given a detailed, and thorough
explanation of how their taxation is built up, and
why rules were applied and how.

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 6mde-network.org

1. CASE STUDIES

DATEV, a German cooperative with over 400,000
customers

DATEV eG has more than 400.000 customers for its service on tax and payroll slips calculations. Founded in 1966,
the organization now has about 8.100 employees, working in its headquarters in Nuremberg and 23 subsidiaries in
Germany.

Over 13 million payroll slips are processed every month by DATEV.

DATEV has interesting challenges, like for example supporting the ability to recalculate payslips considering the
laws and regulations that were valid at a particular point in time in the past.

The Challenges

Challenge 1: Temporal variability

Most data in this domain varies over time. For
example, salaries or tax rates. Most operators
(e.g., +, -, *) must therefore take this into account,
which significantly adds to the complexity of the
implementation.

Challenge 2: Tight implementation deadlines

Changes to the rules are outside the control of
DATEV but may need to be implemented correctly
in a short timeframe (weeks) to then be applied to
over 13 million payroll slips.

The MDE Approach

The most important advantage of this approach is that
it permitted to better separate concerns: developers
could focus on technical aspects, like the cloud
infrastructure, while experts were able to define rules
for tax and payroll calculations autonomously.

Most calculations have also to take into account not
only regulations but also data changes, like for example
salaries being increased during the year. Temporal
dimensions are difficult to track in traditional software
development but are addressed much more easily in
the DSLs developed at DATEV.

It should also be noted that the DSL can use terms
in the natural language which is most convenient for
the users. For example German or Italian. Typical
programming languages are instead restricted to
English keywords.

This images comes from [4]

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 7mde-network.org

1. CASE STUDIES

DATEV, a German cooperative with over 400,000
customers

The Benefits

Domain logic and technology separation

Separating logic and technology brings the
usual benefits as discussed in the other case
studies.

Explicit support for temporal variability

By allowing expressions in the DSL to be tied
to particular timeframes, there was a powerful
framework for capturing the complexity in
time of calculating payroll slips.

Localized support

The DSL can use natural-language terms that
are easier to use for domain experts than the
typical English terms used in programming
languages.

This images comes from [4]

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 8

2. KEY CHALLENGES

mde-network.org

1. Handling variability

Variability is very high both because the
regulations change continuously but also because
they vary in different jurisdictions.

2. Time constraints

Typically changes in regulations need to be
reflected into software in a timely manner. This was
for example the case during the pandemic, with
different governments and regulatory agencies
enacting changes in regulations with immediate
effect.

3. Coordination between developers and domain
experts

It is costly to coordinate developers with domain
experts. They need to learn how to communicate
with the other party without sharing a common
background. They are often prevented to work
independently because each rely on the other in
order to progress with the process of reflecting in
software tax and payroll regulations.

MDE and DSLs could help tackle some of the main challenges faced when implementing tax and payroll
calculations with traditional development techniques.

While there are several challenges we consider useful to underline these three:

What key challenges are there in Tax and Payroll that
could benefit from MDE?

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 9mde-network.org

How can MDE concepts help address these challenges?

A Domain Specific Language for tax and payroll calculations permits experts to capture their domain consisting of
tax brackets, rules for deductions, withholding regulations, and so on.

Think of a specialized version of Excel, which understands the domain and can guide the user, avoiding a lot of
possible mistakes and simplifying the work.

This images comes from [3]

In traditional software development, experts have to explain to concepts analysts, analysts write them down
in large functional requirements documents, which are then implemented by software developers. This whole
approach requires a lot of coordination and causes issues, as the developers are not accountants, and the
accountants are not developers. Feedback cycles are long and misunderstandings typically emerge only after
developers have completed their work.

DSLs change all of that, making it possible for experts and developers to collaborate much more efficiently, with
everyone working on what they can do best.

3. HOW CAN MDE HELP?

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 10mde-network.org

Where are we? Problems solved and challenges

The problem we know how to solve with DSLs is to make it possible for tax and payroll specialists to
formalize their understanding of regulations and calculations without the intermediation of devel-
opers. We give them languages and supporting tools.

What advantages does this bring with respect to having expert writing requirements and develop-
ers formalizing them into code?

This means:
• Reduced development time, which in turn means lower cost and faster time to market.
• Reduced costs, as errors are found while writing specifications using the DSL while traditionally
errors are found much later, during development and are therefore more costly to correct.
• Reduce communication costs, as we do not need meetings to have tax and payroll experts explain
things to developers and vice versa. We also avoid all the misunderstandings that often happen
when these two groups of people have to work together.

We know how to design these languages, and how to create the supporting tools, and we have ex-
periences telling us they work in practice.

Let’s start with the bad news: as of now there is no DSL for taxes and payroll that you can simply
buy. You need to build one for yourself, or get it built for yourself by someone with experience on
this. That would of course mean that you will end up with a tailored solution, specifically designed
for your specific needs.

So, what resources can help you in this journey?

You may want to learn more about DSLs, for that we suggest reading The Complete Guide to (exter-
nal) Domain Specific Languages.

After reading it, you should get a much better idea of what DSLs are, what benefits they bring, and
also some ideas of the alternative solutions to build them.

If you want to dig deeper and learn how to actually design DSLs for yourself there are two books we
would recommend:
Business Friendly DSLs will help go straight to the point and teach you how to build lightweight
DSLs running right in the browser. No time wasted in theory, just solutions and ideas you can apply
right away
DSL Engineering is instead the right book for you if you want to learn about advanced patterns and
design decisions you should take when building a Domain Specific Language

3. HOW CAN MDE HELP?

https://community.mde-network.org/
https://mde-network.com

MDE for Tax & Payroll Calculations 11mde-network.org

[1] MPS Community Meetup 2018 - Challenges of
the Dutch Tax and Customs Administration (DTCA)
https://www.youtube.com/watch?v=_-XMjfz3RcU

[2] Domain-specific languages to implement Dutch
tax legislation and process changes of that legislation.
https://resources.jetbrains.com/storage/products/
mps/docs/MPS_DTO_Case_Study.pdf

[3] A Domain-Specific Language for Payroll
Calculations: an Experience Report from DATEV
Markus Voelter, Sergej Koscejev, Marcel Riedel, Anna
Deitsch and Andreas Hinkelmann

https://voelter.de/data/pub/voelterEtAl-payrollDSL.
pdf

[4] A DSL for Payroll Calculations by DATEV, by Marcel
Riedel

 https://www.youtube.com/watch?v=uof9ERpBXSk

[5] Domain-specific modelling for the Dutch Tax
Agency: how MDE enabled civil servants to program
[5] Domain-specific modelling for the Dutch Tax

Agency: how MDE enabled civil servants to program
tax law. https://mde-network.com/wp-content/
uploads/2021/10/A-success-story-Dutch-Tax-Agency-
final.pdf

[6] MDSE at the Dutch Tax and Customs
Administration, by Barbara Adema

 https://staf2019.win.tue.nl/wp-content/
uploads/2019/09/STAF-ID-Adema.pdf

[7] Software maken met een fabriek https://werken.
belastingdienst.nl/nieuws-en-artikelen/software-
maken-met-een-fabriek-115

[8] Regelbeheer https://gitlab.com/commonground/
virtueel-inkomstenloket/regelbeheer

We would like to thank Markus Völter for providing valuable feedback and
improvements to this document.

Acknowledgments

4. ACKNOWLEDGMENTS AND SOURCES

Sources

https://mde-network.com

MDE for Tax & Payroll Calculations 12

5. NEXT STEPS

mde-network.org

Join our community platform

This network is a broad church. If you are interested in software development, automation, or (computational)
modelling in other domains (biology, AI, robotics, finance, …), this network will likely have something for you.

Building the MDE Brand

Focusing on activities to increase
the visibility of MDE research,

and on community building.
MDENet will be the home of
the MDE community and the

authority on MDE, opening this
space to individuals and teams not

previously involved in MDE

Training the IT Industry

We will curate and produce
training material, lowering the

barriers to entry for potential new
users of MDE technology. These,

in turn, will bring new demand and
challenges for future research and

development in MDE, creating
demand and support for new and

improved training materials.

Driving Future Research

We will establishing a clear
understanding, shared by the

community, of the current state
of the art in research and the
challenges at the forefront of

academic research and industrial
use. We also aim to identify and
create opportunities for cross-

disciplinary MDE research.

ABOUT MDE NET

The EPSRC network MDENet brings together research and practice in Model-Driven Engineering (MDE).
We will do this by:

ABOUT THE AUTHORS

Federico Tomassetti is a Language Architect at Strumenta, a boutique

consulting studio he co-founded. In his role at Strumenta, Federico

is involved in different Language Engineering projects, ranging

from the definition of Domain Specific Languages for different

domains to the design of transpilers, editors, and interpreters. He

got his PhD in Language Engineering between Italy and Germany.

He speaks regularly at conferences and organizes the Strumenta

Community, to hold discussions around Language Engineering.

Steffen Zschaler is a Reader in Software Engineering at King’s

College London and the director of MDENet, the expert network

on model-driven engineering. His research interests include

model-driven engineering, graph transformations, and principled

simulation engineering. More information can be found at www.

steffen-zschaler.de and he can be contacted at szschaler@acm.org.

Meinte Boersma is an active practitioner of model-driven software

development and DSL engineering since 2007. He designs, implements,

and deploys DSLs for various companies and organizations, using a

multitude of technologies. Furthermore, he speaks on conferences,

publishes blogs, participates in the development of open source

standards and frameworks for DSL engineering, and is actively

involved with the software language/DSL engineering community.

If you have found this interesting and would like to explore MDE further,
there is help to hand.

Join us in MDENet (www.mde-network.org) to engage with an international network of experts in model-driven
engineering, access learning resources, events, and funding.

https://community.mde-network.org/
https://mde-network.com
https://community.mde-network.org
https://www.linkedin.com/company/mdenet/
https://www.youtube.com/channel/UCbaSQPliKr2ftWwgYxBN3vg
https://twitter.com/the_mde_network
http://www.mde-network.org

