
MDE for

Jörn Guy Süß

This document introduces you to some challenges in DevOps with pointers to how Model-Driven
Engineering can help address these challenges. We do this through some case studies to give a
concrete feel for what MDE might bring to the DevOps table.

Before we begin to give an overview of the studies, we would like to introduce devops or development
operations by example. If you are a DevOps practitioner and use DevOps daily, you can safely skip this
introduction.

MDENET
RESOURCES

DevOps

mde-network.org MDE for DevOps 1

https://mde-network.org

MDE for DevOps 2

1. KEY CHALLENGES

mde-network.org

DevOps: Programming in the Very Large

As an example let us consider a logistics information system that allows parcel delivery track and trace for contracted
drivers. Drivers register with the company, install an app and start delivering parcels. Customers see parcels being
delivered on a website.

This system has a speed-optimized storage backend that enhances the functionality of a database product written
in Rust. It has a layer of microservices written in Go, some transactional message queuing components written in
Java, a web portal written in Typescript with Help and Documentation written in Markdown. A kubernetes helm
program describes how the system components are placed on servers and provided with mutual references to each
other so they can collaborate. Onboard clients for delivery drivers written for iOS and Android, and maybe even
versions for Android Auto or Automotive. The apps are published to the respective platform marketplaces. All of these
components need to be versioned, built, tested, released, deployed and any feedback on their performance integrated
back into the process.

This is not an unusual example of a typical business system. Its construction requires operations that in turn require
installations of different development languages and development tools. Potentially, these different languages
compilers and tools may even require different operating systems to work.

Let us look at how this is done for just the website with its help files. We have five different computer installations
to perform the build steps: The typescript computer compiles and tests the typescript installation. If the build
is successful it releases the result through an NPM repository. The markdown computer in parallel spell-checks
and semantic checks the documentation. If the build is successful it releases the result through a general artifact
repository. The Kubernetes helm computer collects these two repository entries and deploys them within a test
installation within an off-the shelf nginx web server. That is it instructs a service to install a new server or servers,
install components onto that server and then connect that system of servers to the required network, possibly the
internet.

DevOps is the programming of coordination between build steps across programming-language-system and tool
boundaries in development, including deployment to operations. In addition, it encompasses the feedback loop
from operations. This means that if a program fails in production or in testing that failure information will feed the
development directly. Generally, the failure is recorded, and provided as a work item to investigate for the developer.
Failure information is input to the devops program. Devops is the programming expression of software engineering.
It builds the engine that builds and runs the software process. It is programming in the very large because it
encompasses not just the object program (the product) , but the subject program (the process).

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 3mde-network.org

1. KEY CHALLENGES

Devops achieves this goal generally by creating a chain of macroscopic operations, each located on a computer that is
specifically installed with the programming language or operations tools required for the step. Devops languages are
process languages that allow the coordination or training of such installations and the provision of textual instructions
to the various computer installations. They also allow the passing of artifacts between the installations.

Devops programs are written for and executed on proprietary server products that offer a runtime for Continuous
Integration / Continuous Deployment (CI/CD), such as Github Actions, or Gitlab CI, Circle CI, Bamboo and many more.

The example above speaks of specifically installed computers to perform the various steps. However, these are almost
always replaced by containers. A container is the definition of an installed computer.

The example shows how DevOps is different from running just Maven, Gradle, CMake, Helm or any other
programming or test tool. DevOps is programming above all these tools including the aspect of deployment and
feedback.

This enormous scale causes DevOps to accrue enormous software engineering complexity. Optimisation of DevOps
processes is as challenging, if not more challenging, then the design of the actual product. For example, the ability of
an organization to respond to the publication of a crucial software security exploit can make the difference between
ongoing business and bankruptcy. This directly correlates with how long it takes to deploy a new version of software.

At the same time, the human process participants cannot be burdened with understanding the technicalities and
details of the complex DevOps program. They need to interface with useful, adequate abstractions. For example,
an author of website content will think in document versions and terms of reviewing and publishing, not in terms of
pull requests and commits. Thus, not only is DevOps a complex problem on its own, it also suffers from additional,
accidental complexity of being captured in highly technical terms rather than terms that are accessible to the human
process participants.

What MDE has to offer

Model-driven engineering (MDE) is about developing systems from domain-appropriate abstractions and encoding
the translation into lower-level, technical concepts in automated transformations. Two key ideas from MDE can
be helpful in the DevOps context: domain-specific languages (DSLs) are languages that provide problem-specific
concepts that can be understood by human experts – this can help human process participants to engage productively
in the DevOps process. Model transformation languages allow the executable specification of translation between
different models, expressed in DSLs, and code, for example instructions for DevOps tools and infrastructures.

https://community.mde-network.org/
https://mde-network.com

2. CASE STUDIES

MDE for DevOps 4mde-network.org

Designing DevOps - Programming the Process is
Complex

The Challenges

As a programming practice for processes
in large businesses, DevOps has two major
challenges: The heterogeneity of DevOps
languages and the speed and potentially
irreversible nature of executions.

Challenge 1: Heterogeneity and Lock-in

Much like the domains of programming languages,

the domain of Devops is characterized by

competing implementations of the machinery that

carries out the build process. Products like Gitlab

CI, Github Actions, CircleCI just to name a few,

fill the marketplace. During the recent economic

downturn companies have come to realize by the

example of cloud providers and services, how

costly being locked into a specific vendor API can

be.

In the case that a DevOps vendor fails, falls

behind in development, or raises usage prices in

an unacceptable manner, transfer of a DevOps

process to a competitor’s DevOps product

requires analysis of the high-detail vendor-specific

DevOps code. Given this code is often expressed

in hard-to-analyze scripting languages, due to

its relationship with operating system shell

scripts, the cost of this analysis can be as high as

reimplementation. Further, if multiple DevOps

products are deployed at the same time, reporting

on execution in a unified way has no support.

Challenge 1: Heterogeneity and Lock-in

Because development operations affect the output

of a company, having homogeneous standards with

regards to naming, documentation and implementation

of a process is important. In the area of architecture

frameworks like TOGAF show how this is done for

products and systems that are deployed. For DevOps,

there is no equivalent at the moment.

At the far other end of the abstraction spectrum

are software systems and teams that are not able to

perform a fundamental build from their source code

any more, and have non-reproducible intermediate

patched binaries and libraries checked as binary

large objects into version control. In this case the

provenance and source code link cannot be recovered

any more. Under such circumstances, security and

quality certifications are usually impossible to achieve,

leading to business disadvantages and losses.

Challenge 2: Simulation and Debugging

Development and deployment processes in DevOps

often have an irreversible nature. Once they are

triggered they cause resource-intensive program

executions that bind storage space and server

processing capacity, and in the case of a deployment,

immediately affect users.

While some of these costly effects can be mitigated by

dividing the DevOps process into stages and checking

each, the actual execution of the mechanism is still

time-consuming. Devops developers currently have

little means to simulate and hence to predict the

implications of a change to the development process.

This includes the simulation of values passed between

higher-level parts of the process such as variables and

parameters.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 5mde-network.org

2. CASE STUDIES

The MDE Approach

Using MDE, we would design a domain-specific language, which enables DevOps engineers and architects to express
their processes in a way that is close to their conceptual understanding of their environment, and where general
processes could be refined for and rendered to the artifacts of the underlying CI and DevOps products.

Language-based processes could be modeled to follow best practices and concerns could be shared between
language- and process-oriented engineering. Concrete implementations would be unambiguously identified using
version control system locations and commits. Reference ids (branches and tags) can be used to define requirements
that link in with version control planning.

The Benefits

Explicable and Tractable Process

At the core of modeling DevOps is the advantage
that the process can be viewed and queried as
a model, and details of the process are hard-
referenced from the model. This provides tractable
information and documentation generation on
processes that can be convoluted and obscure
without governance.

For a DevOps developer, all instances of a certain
DevOps step could immediately be queried
because they would correspond to the modeled
step artifact. A DevOps developer could ‘list’ all the
‘builds’ that were instances of a certain design and
visually inspect them, or even enforce a condition
on those builds. For example, if a file always held
content corresponding to an invariant, that file may
not need to be written, instead, the invariant can
be documented.

More Agility

The availability of architecture information and
explicitly stated responsibility and purpose
prevents process-based technical debt, where a
project team paints itself into a corner and cannot
move, because nobody understands and can hence
change its process automation any more. In effect,
it defines a type of interface between the elements
of the process at the level of the team’s choosing.

This does not mean that all details of the DevOps
implementation are captured, but that the
elements that are essential to create an effective
model of the DevOps process are captured. New
DevOps operations can then be developed based
on existing elements of the model.

Hence by extension, a team that understands that
the effect of a change at the interface level will be
able to make changes more quickly and confidently.
This is generally what is termed agility in software
development: The ability to make significant
changes more quickly, because flanking measures
protect the team from unexpected side-effects of
those changes.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 6mde-network.org

2. CASE STUDIES

The Benefits

Reduced Cost

The ability to compare costs and move a project
to a different CI and DevOps product more easily
provides leverage towards vendors in the market.
As with all negotiation the ability to act is often
sufficient to further one’s position.

The ability to port, reproduce and parameterize
DevOps processes at scale reduces individual
setup cost. If such a setup model and system is
provided as open-source, the providing company
can propose its development style of DevOps
and shape terminology in the public sphere. As a
result, training needs for staff are reduced when
hired from OSS projects using the approach. Staff
training is a highly significant factor in time and
money.

Reduced Operational Risk

While implementation detail is always a reality
and every staff change entails the risk of such
knowledge being lost, architecture and a model
connected to artifacts allows to control the risk
of changes and to make predictions of impacts.
If it is possible to know how many projects use a
certain DevOps vendor, and within that, a certain
feature offered, the impact of dropping the vendor
and moving can be predicted and calculated. If a
certain DevOps product is found to be implicated
in security-relevant issues, e.g. supply-chain attack,
the model can be consulted and mitigations can be
approached in a targeted manner.

Given the high cost of IT insurance, such best
practice can be audited and can contribute to an
argument for a significant reduction in ongoing
insurance costs.

Reduced Vendor Risk

Using such a model, a company may adopt new
entrants into the DevOps product market more
readily and easily. This allows the use of smaller
novel vendors over established ones. Becoming
an early adopter to a successful novel solution can
produce significant partnership advantages as the
new company expands. Effectively, a model helps
replace expert gut feeling, sales powerpoints and
small non-representative consultant tests with
experimentation on real company projects.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 7mde-network.org

2. CASE STUDIES

Team reporting - Plotting a course based on position

The Challenges

Agile practices have taken hold and accelerated
with the implementation of tools that connect
planning in a traceable way to implementation
and deployment through the structures of
databases. CI and DevOps projects express
these links in their user interfaces and usually
through underlying APIs. This is true of the
long-term leaders like Atlassian, side-entrants
like Github, new-comers like Gitlab and all
other players in the CI and DevOps market. For
teams, access to this information empowers
them to understand where the well-managed
points and shortcomings of their process are.
For any software process to achieve any more
than a repeatable level, execution information
needs to be captured in such a way that the
team can reflect on it.

Challenge 1: Understanding where you are

As projects are ultimately specific to a domain,

the off-the-shelf reporting and data structures

ultimately do not align with a team’s needs, as it

aims for quality. This usually leads to painful shoe-

horning of the team’s specific needs into the rigid

framework of the product’s data structure.

For example, tests may be running too long or too

frequently but catching few issues, while the real

issues lie deeper. A typical case are functional

tests encoded as user interface tests. Duration

of UI tests is not usually a property of general CI

systems, because it is specific to UI-based projects.

Without capturing the salient properties, the team

does not know where it stands with regard to

quality.

Challenge 2: Plotting a course

Often the data captured in the inadequate general

structures of the vendor’s framework is base data, but

what is required is the ongoing production of derivative

data and usually the conversion into control inputs.

A team may have a weight matrix for their components

and would apply priorities and test intensities based on

these. Without additional tooling, they would not be able

to automate these specific project needs.

Likewise, if the team would capture test quality and

user feedback, these would be challenging to aggregate

meaningfully with the vendors general facilities.

A team left without the ability to make predictions and

plan with derived specific models is left to discover

outcomes by testing. However, unless the system’s

architecture is very well defined, this step is often slow

and expensive.

Tests are partial and live on the ‘right’ side of the

development process, while software engineering aims

to make processes and tools that shift verification and

validation to the left, to fail early.

Without engineering the process and process data and

just generic data capture tools, this is very challenging to

accomplish.

Challenge 3: Get a bigger map

For company-level management, as the setter of

directions, the needs and trends at the actual team

level are an important concern. If there is a sound trust

relationship between company level and teams, examining

objective trends can help to decide deployment of

complex tools that need substantial infrastructure and

training. For example, fuzzing is known to be a highly

effective testing practice, but has low adoption in most

projects because its barrier to entry is high.

The bigger map will often require the management to

either become technically more proficient or to place

more trust in the teams to seek support with resources

provided. Reporting of actual useful numbers can drive

the bigger map.

Without truthful, rich and adequate reporting,

management is unable to assess the situation and assist.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 8mde-network.org

2. CASE STUDIES

The MDE Approach

Using MDE, we would design a domain-specific language, which enables teams to express typical queries against their
processes in a way that attaches directly to the underlying artifacts of the CI/DevOps product, such as stories, tickets,
epics, incidents, deployments, branches, tags, commits, releases and the feedback that the underlying processes
produce, like test outcomes, coverages, timings and other metrics. That information is captured in a versioned
database system like the Eclipse CDO™ (Connected Data Objects) Model Repository.

The Benefits

Powerful reporting and analysis with every commit

Model-driven approaches provide teams a way
to succinctly express their own model of quality
and attach it to that of the off-the-shelf DevOps
product where there is a semantic match. Model-
driven toolchains use these models for queries
to render reports. At this stage, all model-driven
practices such as validation, advice generation,
transformation and reporting become available.

Validation ensures that business rules that pertain
to a client’s model of a state of business or work
item can be checked. Advice generation uses
rules to suggest improvements to a model to the
modeler maintaining it. They allow lowering the
level of entry for modelers, Transformation allows
the use of rules to turn one model into another, mix
multiple models together and upgrade versions.
Transformations allow one to convert a model
of one aspect to produce data for another. They
allow the team’s own model to be exported into
models in other modeling languages. For example,
if the team has a way to express its data in UML
or TOGAF, transformations allow the export
into models based on these languages. System
and Enterprise architects can then use them
unambiguously. Reporting produces textual,
graphical or tabular summary information about
the content of one or more models, supporting
discovery and the making of decisions. All of these
practices are usually required in model-driven
projects on a larger scale.

Single model representation covering all performance
needs

The advantage of the model-driven approach
is that all items of analysis are presented in a
conceptually homogenous way and can be linked
easily. They can be prototyped with little effort
in interpretation and, if required, optimized for
higher performance by compilation.

This does not apply to approaches that use
databases or other data stores. Only model-driven
technology combines the strength of schema-
based languages with linking of instances, ad-hoc
storage and the ability to optimize performance.

Adapting the process based on data

Using the succinct and project-specific input in
the model, new metrics can be defined that reveal
underlying obstacles. This allows the process to be
changed to address these issues early (shift left),
so they do not cause the wedge effect of great cost
later.

For teams that know their position based on
data, there is the opportunity to take advantage
to revise the queries that produce it until the
underlying challenges are clear and the process
improves. Plotting the course can also involve
discovering “black spots” where the team has
process challenges that it cannot cover with its
own expertise.

Incremental adoption: Start small, take the first hurdle,
grow

While the solution section above talked about all
the sources reporting may ultimately draw data
from and the potential for growth and acceleration,
teams can start with a simple daily report that
benefits them. Tools like Epsilon allow easy
interfacing with the standard artifacts of business,
such as CI system reports in XML, JSON and
YAML, and spreadsheets in CSV and Excel format.
Teams can lean on this ad hoc data support to
implement initial steps within the small time budget
usually available for process changes to use the
results to argue for more internal time investment.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 9mde-network.org

2. CASE STUDIES

Quality and compliance mapping

The Challenges

For team management and sales, as the external interface of a team, and for a company as a whole, casting process
information in such a way that it shows compliance with industry standards is a great way to communicate the
quality of outcomes. Domain performance standards like GDPR (EU protection of privacy on the internet), PCI
DSS (credit card payment), SOX (banking accountability legislation), HIPAA (health insurance data legislation),
FIPS (U.S. federal information processing standard) and FISMA (U.S. federal information security management)
and software process and quality standards like TOGAF, ISO 27001, 29119, 12207, 27034, 62443 and 9001 are
all either required or desirable properties of software or software services for purchases in the software market.

Challenge 2: Non-functional as an after-thought

Compliance tends to involve a number of non-functional

aspects of software: for example the aspect of what data

is being logged, how it is being transported to log output

and who the logs will be available to. These aspects are

often omitted in the solution and feature-oriented design

of systems and are hard to retrofit once implementation

is notionally complete. As a result software solutions

can fail compliance and accreditation despite superior

quality of the underlying software in terms of features and

usablity.

Challenge 3: Continuous updates

Accreditation projects are often undertaken at

considerable cost involving external consultancy.

The accreditation of the software or service is often

linked to the requirement that the service or product

remains unaltered from the time of accreditation. This

is diametrically opposed to the idea that agile software

should be updated aggressively to serve the customers

needs.

Challenge 1: Not knowing where to start

Showing compliance is often tedious because there is

no internal structure to map the external elements of

compliance to, leading to paper tigers of procedures stuck

in a TBD state for most projects. This situation makes

it hard for companies to get started with compliance

mapping, leading to a concentration of large vendors that

achieve certification and limited competition from small

and medium-size companies (SMEs) in bidding where

compliance is required.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 10mde-network.org

2. CASE STUDIES

The MDE Approach

Software teams are usually able to consider and explain non-functional aspects of their software if this is required
and requested. Likewise company management usually has a specific idea as to what accreditations they would like to
pursue for the products and services to be sellable. An MDE approach would create a model that captures the aspects
that the various accreditation schemes have in common and connect that model to data input in every project. The
approach would further encompass appropriate model transformations that connect the software being constructed.

Reduced cost for multiple certification targets

The advantage of this approach over paper is
that models are traceable and can be projected in
various ways. The quality model of a company can
be cast to produce documentation for various and
not just a single accreditation aspect.

Live link to the software in question

By creating a company specific model that
expresses the desirable accreditation needs the
software that a team produces can actually be
linked to the model of the accreditation that the
company is pursuing.

The model would be incrementally filled by the
participants in the various project teams. Audits
can then follow a structure pattern that leads to
actual parts of the software pertinent for the audit.
for example designs for logging or authentication
would be highlighted during the process of the
software design and I hence easy to find into
inspect.

To enable software developers to interact with the
model, inline annotation in the code will probably
emerge as a means to provide information to
the model. For example, C# would use custom
attributes while Java what use custom annotations
and C++ would use compiler attributes or custom
documentation tags.

Low Update Effort - Dynamic Software

The process of linking the software to the quality
model and producing up-to-date projections from
this model can be made an ongoing process based
on the DevOps practice. This allows the company
to have audit-ready quality processes at any time
without sacrificing an Agile approach to software.

The live link will also surface effective means to
maintain quality, and emphasize standards that
have current value, while highlighting standards
that are hard to implement or are behind the
current practice. In this sense, this live link will
encourage a company to engage with the creation
and maintenance of sensible industry standards.

In the extreme, it will change a company from
being a consumer of standards to becoming an
influencer of standards, adding to the company’s
reputation through evidence of its professional
practice.

https://community.mde-network.org/
https://mde-network.com

MDE for DevOps 11

3. NEXT STEPS

mde-network.org

Join our community platform

This network is a broad church. If you are interested in software development, automation, or (computational)
modelling in other domains (biology, AI, robotics, finance, …), this network will likely have something for you.

Building the MDE Brand

Focusing on activities to increase
the visibility of MDE research,

and on community building.
MDENet will be the home of
the MDE community and the

authority on MDE, opening this
space to individuals and teams not

previously involved in MDE

Training the IT Industry

We will curate and produce
training material, lowering the

barriers to entry for potential new
users of MDE technology. These,

in turn, will bring new demand and
challenges for future research and

development in MDE, creating
demand and support for new and

improved training materials.

Driving Future Research

We will establishing a clear
understanding, shared by the

community, of the current state
of the art in research and the
challenges at the forefront of

academic research and industrial
use. We also aim to identify and
create opportunities for cross-

disciplinary MDE research.

ABOUT MDE NET

The EPSRC network MDENet brings together research and practice in Model-Driven Engineering (MDE).
We will do this by:

About the author

If you have found this interesting and would like to explore MDE further,
there is help to hand.

Join us in MDENet (www.mde-network.org) to engage with an international network of experts in model-driven
engineering, access learning resources, events, and funding.

Jörn Guy Süß is the founder of Committed Consulting, a software engineering consulting company focussed

on DevOps, Model-Driven Engineering and Eclipse. With twenty years of experience in applying MDE to areas

ranging from connected car IoT to mining simulation, traffic management and full-stack software generation, he

is one of the old hands at applying MDE in business.

https://community.mde-network.org/
https://mde-network.com
https://community.mde-network.org
https://www.linkedin.com/company/mdenet/
https://www.youtube.com/channel/UCbaSQPliKr2ftWwgYxBN3vg
https://twitter.com/the_mde_network
http://www.mde-network.org

