
Success Story: Model-Based Testing at Verified Systems
International

Software testing is intrinsically model-based: one needs to tell apart
failed and passed test-cases and this calls for a model. Models can
further be used to drive test generation and test selection. Model-
based testing is a mature field of research dating back to the early
work of pioneers such as Edward F. Moore. We have seen several
successes in the application of model-based testing to large-scale
industrial systems. However, its application to contemporary
software and systems is still challenged by the complexity and
heterogeneity of such systems.

In this edition of Success Stories, we interview professor Jan Peleska,
who took the leap to apply the wealth of research, partly done by
himself, into model-based testing of large-scale industrial systems.

Professor Peleska is a professor of computer science at Bremen
University in Germany and the co-founder of Verified Systems
International GmbH, a company specialised in Validation and
Verification services and tools. Under his leadership, we have seen
several successful examples of the applications and
commercialisation of model-based testing and in this interview, we
intend to review these and also focus on the challenges ahead of
using model-based testing.

How would you present yourself?
My name is Jan Peleska. I am a Professor at the University of

Bremen. I focused my research on Safety critical control systems,
verification, validation, testing, and modelling.

In 1998, Cornelia Zahlten (my wife) and I co-founded a
company called Verified Systems International specialised in
Verification and Validation (V&V) for Safety Critical systems. We now
have 25 employees, and we are doing relatively well. Our customer-
base includes leading companies such as Siemens or Airbus. We also
provide V&V equipment, and hardware for in-the-loop test benches.
Our main product is RT-Tester, which consolidates conventional and
model-based testing.

Can you define Model-Based Testing in the context of your work?

This is not a trivial question; there are many approaches to
Model-Based Testing. In the context of our company, Model-Based
Testing works as follows. We analyse the expected behaviour
observed of the system under test according to models. From
requirements, the product automatically generates tests to cover all
cases. By means of temporal logic and formal behavioural
specifications, we create concrete test data. The same product, RT-
Tester, allows for testing on several levels, from hardware to
software. We provide conventional testing and alternatively model-
based testing – with an extended license.

https://www.verified.de/

Model-Driven Engineering and Model-Based Testing are very
powerful. Yet, they do not seem to be as widely adopted as one
would expect. How would you explain this?

There is a strong and large international research community
around model-based testing. However, on the academic side, test
automation is not so en vogue. Everybody is talking about AI.

Model-Based Testing is not an easy sell for industrial

applications and there are several explanations for that. Writing
good models in a well-defined language is hard. In most companies,
system requirements remain textual. Even some well-known
aerospace companies failed to introduce Model-Based Testing. It
seems hard to introduce model-based approaches to large
companies. There are always some enthusiasts, yet it is still
challenging. I believe one of the main reasons is the lack of
appropriate modelling languages. For example, SysML is imperfect.
The tool support is still weak and expensive.

Programming Integrated Development Environments are
much more advanced than modelling Tools. There is a lot of
investment in IDEs because it reaches a large community. Companies
are not fully satisfied economically by Model-Based Development,
that’s why there is less investment in building relevant tools. I am
waiting to see what will happen to SysML version 2. It will provide a
textual and graphical programming language. Yet, I think a major
issue is its very large syntax. SysML has over 400 pages of language
description! It makes it very hard to build efficient tools. VSCode
supports SysML extension but without semantic checks. For that
reason, the code generator is still missing.

I believe Model-Based Programming requires a strong
academic base. I would say you meet more skilled programmers
than skilled modellers. It is on a higher level of abstraction.
Developers are more willing to learn coding languages, that have
direct applications, than modelling that seems too complicated.

It is interesting to note that despite all these challenges you did
manage to commercialise this technology and use it with large
multi-national companies. Can you tell me about the main
challenges you faced to create your product?

After I finished my Ph.D. in mathematics, I went into the
industry for a few years. I worked for Phillips, in the control system
domain and then as a freelance consultant. In 1995, I decided to go
back to University. In 1998, Cornelia Zahlten and I created the
company. She was the managing director - there are two more
managers now. Ever since, I worked at the University and for the
company simultaneously.

To go back to the creation of the company, the first version
of the product used Communication Sequential Processes (CSP)
algebra. Unfortunately, it was not very well welcomed by the
customers. They found it too hard to learn. Therefore, we had to
translate CSP processes to SysML, which was a very challenging
task. The first major challenge was to understand SysML
semantics. Then, we had to create real-time transition relations
between the model and the background. It was very hard. From
there, we could apply known technics to translate, such as bounded
model-checking and tests from witnesses. Every model needs to be
semantics at some level. The transition from CSP to SysML took
approximately 5 years. It was supported by research projects and
customers.

Airbus hired us as a service. They needed modelling as an
effective way to review what was tested. It is a powerful
communication tool. We managed to make the requirements traced
automatically. We worked on certification: from the requirements,
the tool created tests and displayed results automatically. They were
satisfied with the results, but not sufficiently to build their team of
experts. Let’s say the product did not sell surprisingly well. Also, they
always have more pressing things to do, like designing the next
generation of planes… And quite a few employees did not want to be
qualified for MBSE.

What are the main challenges for MBSE?

I think there is a communication problem between academia
and the industry. From academia, we only produce small, well-
defined languages like process algebras, which are not appropriate
for industry. An industrial-strength modelling language is still
missing. It must be more lightweight than SysML but cover a wider
spectrum of users than formal languages from academia. We know
how to define well-design programming languages, but designing
a perfect model language is still an open question.

What is your vision for your company, and Model Based Testing in
general?

We are adopting a new strategy for the company. In the
future, customers will only write formal requirements. The software
will take formalised requirements and generate test models. We will
use a much smaller modelling language just to learn models from the
requirements and testing in the background. Then, we need to prove
the models generated fulfil requirements. Apparently nobody likes
complex models!

At the System level, we will adopt the same approach. The
software models end-to-end system requirements formalises them
and generates all the relevant end-to-end tests. Future Model-Based
Software Engineering should effectively produce smaller models
representing requirements.

Requirements modelling and automatic model learning are
to me things of the future. We are consulting companies to help
them introduce this new approach.

In the next 2 years, I believe we can reach automatic
requirement modelling. We can produce graphic and textual
supports with RT Tester products. People did not like having a case
tool and test tool separately. We will combine programming,
modelling, and testing in one product.

We will not use SysML version 2. We were disappointed with
the applicability of the traditional model-based approach. It was not
a huge success. Smaller models are easier to understand and easier
to build. For the next 4 to 5 years, we will stick to model learning. We
aim to go from model testing to system testing. Generating end-to-
end tests is hard. Automatically generating meaningful system tests
from requirements is even more complex. I think we will need a
combination of requirements and expert knowledge on how the
system should work. Systems become more and more complex,
exponentially in fact. 10 years from now, I think it will be completely
impossible to set up comprehensive models for the whole system
because of this complexity. I foresee scenario modelling will play a
major role. We can generate a set of scenario models. Then of course
we need to prove it is a complete set to tell you what your system
does. I know people from Siemens that already tell me they cannot
write comprehensive specifications because systems have become
too complex. Simulations will also play a major role. Statistical

approaches can calculate that the residual probability that we forgot
a model is insignificant. I did not invent this, unfortunately!

This is my vision, I may be wrong of course! Anyway, It is a
very exciting time for model-driven engineering. We will see what
happens!

Jan Peleska, professor for computer science (operating systems and
distributed systems) at Bremen University, interviewed by Avner
Bensoussan.

